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Abstract— In this paper, we discuss the realization of a
robotic mobile sensor network that allows for controlled re-
configuration of sensor assets in a decentralized manner. The
motivation is to allow the construction of a new system of
science observations that requires higher spatial and temporal
resolution models that are needed for understanding environ-
mental changes. To enable controlled reconfiguration of these
sensor assets, we discuss four formal algorithms that address the
deployment challenges in a distributed way. We discuss these
algorithms in detail and present results of their applications to
a science-driven coverage task.

I. INTRODUCTION

Mobile sensor networks have been shown to be a powerful
tool for enabling a number of activities that require recording
of spatial and temporal variations in environmental param-
eters required for such activities as monitoring of seismic
activity, monitoring of civil and engineering infrastructures,
and detection of toxic agents throughout a region of interest
[15]. In most sensor network applications, individual sensor
agents collect information about their neighboring agents
using peer-to-peer communication. Unfortunately, as the size
of the network increases, bandwidth limitations and the
absence of feasible communication channels severely limits
the possibility of conveying and using global information.As
such, the utilization of decentralized techniques for forming
new sensor topologies and configurations is a highly desired
quality of mobile sensor networks. Establishment of these
sensor configurations involves determining how to allocate
sensor positions to mobile sensor agents in order to achieve
a desired topology - a similar research objective that is found
when focusing on the task allocation problem with teams of
robots.

In the last few years, different approaches have been
used to solve the task allocation problem: centralized [3],
[4], hybrid [5], [10] and distributed. The distributed ap-
proach, considered ideal for large teams of robots or mobile
sensors, has characteristics that fit most applications: high
fault tolerance, fast response for dynamic changes in the
environment and low computational complexity. Basically,
two main approaches have been studied in depth in order
to solve the problem for independent loosely-coupled tasks:
behavior-based [14], [20] and market-based [2], [5], [6],
[17]. While the first approach presents high fault tolerance
and adaptability to noisy environments, the second approach
obtains efficient solutions close to the optimum.

Most of the research in this area has typically focused
on solving the general task allocation problem where more
than one task can be allocated to a single robot. However,
there are other types of problems that cannot be solved
with these algorithms, for example, the Initial Formation
Problem [1], [13]. This problem can be stated as follows:

Given a number of tasks,{T1, T2, ...TN}, a team of robots
{R1, R2, ..., RM}, a function C(Ti, Rj) that specifies the
cost of executing taskTi by robotRj and considering that
the number of tasks must be less or equal than the number
of robots, i.e.,N ≤ M . Find the assignment that allocates
one task per robot and minimizes the global cost defined as∑M

j=1
C(Ti, Rj), wherei is the task assigned to robotj.

This type of problem becomes really important within
the field of formation control [8], [12] where using local
information and control laws, the distributed algorithm is
able to drive a given formation error to zero. However, as
it is stated in [9], these algorithms require a first step that
assigns the robots to the formation positions while taking
into account their initial positions, i.e., answer the question
who goes where? Usually this problem has been solved
using centralized solutions such as the Hungarian method
[11], since the Initial Formation Problem can be viewed as
a classical job assignment problem where robots are the
workers and tasks are the jobs to be executed by those
workers. However, this type of solution requires that all the
robots have to communicate between each other and has all
the disadvantages related to centralized systems: low fault
tolerant, computational complexity and slow response for
dynamic changes in the environment. Furthermore, it is not
possible to take advantage of all the good characteristics
related to distributed algorithms if part of your problem has
to be solved in a centralized way.

For that reason, it is important to come up with an
algorithm that solves the Initial Formation Problem in a
distributed way. Our interest is to obtain not only a feasible
solution, but also an efficient one. Due to that fact, a market-
based approach has been chosen which uses negotiations in
order to allocate the different tasks. This negotiation is typi-
cally implemented by using some variant of theContract Net
Protocol [16], [18], where two roles are played dynamically
by robots: auctioneer and bidders. The auctioneer is the robot



in charge of announcing the tasks and selecting the best bid
from all the bids received from the bidders. The best bid is
considered the one with the lowest cost.

In order to use the distributed algorithm to solve the
Initial Formation Problem, we must reformulate it as a task
allocation problem where the tasks are waypoint tasks that
coincide with the positions of the formation. For that reason,
the cost used in the bids is a quantity that reflects how much
it will cost the robot to go to a certain waypoint, such as the
euclidean distance or the traversability index [7]. Also, it is
important to point out that one robot can only be allocated
one task, since the final objective is to assign one position
of the next formation to each robot.

The paper is organized as follows. In the next section,
a basic market-based algorithm that solves the Initial For-
mation Problem will be explained. This algorithm obtains
good results when the initial position of the robots and
the formation positions are calculated at random. However,
in specific types of scenarios the results obtained have
large errors. In Section III, different modifications of the
basic market-based algorithm that improve its results will
be addressed. These algorithms try to improve the basic
algorithm in two aspects:

• Use a better cost function.
• Select the task to be bid on in a more clever way.

The first algorithm called RMA improves the results using
more intelligent logic when selecting a task, while the
next algorithm, TMA, uses a new cost function. The last
algorithm, RTMA, combines both features. In Section IV,
simulation results will be presented and discussed showing
the advantages and disadvantages of each algorithm. Finally,
conclusions and future work are provided in Section V.

II. BS: BASIC MARKET-BASED APPROACH

A market-based algorithm has been used to solved the
Initial Formation Problem. As usual in algorithms based on
the Contract Net Protocol, two roles are played dynamically
by robots: auctioneer and bidders. The auctioneer is the agent
in charge of announcing the tasks and selecting the best bid
from all the received bids. In our case the best bid is the one
with the lowest cost and the cost is equal to the distance from
the robot to the task. The complete algorithm is explained in
Algorithm 1. On the other hand, the bidder role is explained
in Algorithm 2. The basic idea is that each robot must have
only one task, so it will keep the task with the lowest cost.
If it wins a new task that has a lower cost than the one
already won, it would sell the old task to the robot with the
best bid but worse than its own bid. The best bid worse than
the robot’s bid is selected in order to avoid infinite loops in
the negotiation. This scenario could happen when two robots
have the best bids for at least three tasks as shown in Figure
1.

For formation initialization, a slight modification is im-
plemented for the market-based structure. At the beginning,
tasks are introduced by a human operator, such as a scientist,
using a monitoring center or a planner that generates tasks
from an abstract mission. Therefore, in our system there are

Fig. 1. Figure A presents the initial position of the robots and the tasks.
Figure B presents the messages exchanged among the different agents and
shows how an infinite loop appears in the negotiation protocol.

two types of agents: robots and monitoring center, and two
types of roles: auctioneer and bidders. Both types of agents
can play both roles. However, the monitoring center plays
the auctioneer role at the beginning and after all the tasks
are introduced, it switches to the bidder role with a constant
bid equal to infinite for all tasks in order to assure that it
will never win a task after the auction starts. It is important
to point out that the monitoring center need not be unique,
i.e, the same algorithm works with distributed insertion of
tasks. Also, tasks can be generated dynamically by robots,
and therefore, there is no firm requirement for existence of a
monitoring center. It is rather just an implementation detail.

Algorithm 1 Auctioneer algorithm
if announcement-task list is not emptythen

announce task
while timer is runningdo

receive bids
end while
calculate best bid worse than the robot’s bid
send task to best bidder
delete task from announcement-task list

end if



Fig. 2. Difference in cost between the optimal allocation and the one
obtained with the basic market-based algorithm.

Algorithm 2 Bidder algorithm
a new message is received
if new message is a task announcementthen

calculate bid (distance to the task)
send bid to the auctioneer

else if new message is a task awardthen
if the robot has already won a taskthen

if cost of the new task< cost of the won onethen
introduce old task in announcement-task list and
delete it from won-tasks list
introduce won task in the won-tasks list

else
introduce won task in the announcement-task list

end if
else

introduce won task in the won-tasks list
end if

end if

From the results shown in Section IV, it can be stated that
this algorithm obtains not bad results when the initial position
of the robots and the tasks are calculated totally at random.
However, there are situations when this algorithm does not
obtain good results which usually happens when a robot has
to take a task that is the worst one for its own interest, as can
be seen in Figure 2. In this example, the global cost obtained
with the market-based algorithm is66.67% greater than the
optimal allocation.

III. IMPROVED ALGORITHMS

In order to solve the initial formation problem, the task
allocation algorithm has to solve two main problems:

• How do I calculate the bid for a certain task?
• If I won more than one task, how do I determine which

one to keep?

In the basic market-based approach, bids are the distance
between the robot position and the tasks (we are only
considering waypoint tasks) and if one robot wins more than
one task, it keeps the one that is closest to itself, i.e., theone
with the lowest cost or best bid. Therefore, if our objective

is to improve the basic market-based algorithm, one or
both of these aspects must change. Moreover, the improved
algorithm must keep the advantages of the market-based
approach: fault tolerance, independent from the number of
robots and high adaptation to changes in the environment
using reallocations.

A. RMA: Robot Mean Allocation algorithm

Our first improved algorithm is focused on trying to
choose in a more clever way the task that must be kept
when a robot wins more than one task. This is accomplished
using additional knowledge available to the system. Instead
of keeping the task with the smallest distance to the robot, the
task with highest difference between the distance to the robot
and the mean of its distance to all the robots will be selected.
In other words, suppose that there are a finite number of tasks
T and robotsN and robotRk has won tasksTi andTj. In
this case, robotRk will keep taskTi if and only if:

N∑

l=1

D(Rl, Ti)

N
− D(Rk, Ti) >

N∑

l=1

D(Rl, Tj)

N
− D(Rk, Tj)

(1)
whereD(Ra, Tb) is the distance between robotRa and task
Tb.

The question that arises now is how to calculate the
mean of the distances for a certain task. During the normal
operation of the algorithm, the auctioneer receives bids from
all functioning robots in order to allocate the task to the
best robot. At this moment, the auctioneer knows all the
distances between every robot and the current task. Thus,
the mean is calculated by the auctioneer and transmitted to
the robot within the message that informs the robot that has
won the task. The major difference with the basic market-
based algorithm is that the robot must remember the mean
associated with the won task. Furthermore, the robot is
able to compare their means to different tasks because it
remembers the mean of the task already won and the mean
of the new allocated task is sent by the auctioneer as it was
done previously.

This new algorithm obtains better results than the basic
market-based approach as can be seen in Section IV and, in
comparison with the resources used for the basic algorithm,
it only requires that the winner of a task remember the mean
associated with it.

B. TMA: Task Mean Allocation algorithm

In this algorithm instead of changing the way that the
tasks are selected, the cost function will be changed. In the
original algorithm the cost function used to calculate the bid
for a certain task is the distance between the robot and the
task. However, in this improved algorithm the cost function
will be the difference between the distance of the robot and
the task minus the mean of the distances between that robot
and all the tasks, i.e.:

C(Ri, Tj) = D(Ri, Tj) −

N∑

k=1

D(Ri, Tk)

N
(2)



whereC(Ri, Tj) is the cost function for robotRi and task
Tj andD(Ra, Tb) is the distance between robotRa and task
Tb.

The rest of the algorithm works as the basic market-based
approach but using the new cost function instead of the
distance. Therefore, when one robot wins two tasks instead
of comparing the distances to choose the closest one, it will
compare the costs using the new cost function and it will
select the task with the lowest cost for itself. Thus, a robot
Rk that has won two tasks,Ti and Tj will keep Ti if and
only if:

C(Rk, Ti) < C(Rk, Tj), (3)

or

D(Rk, Ti) −

N∑

l=1

D(Rk, Tl)

N
< D(Rk, Tj) −

N∑

l=1

D(Rk, Tl)

N

(4)
As it can be seen in Equation 4, the sum factor is equal

in both parts of the inequality. So, the algorithm will select
a task by using either the distance or the new cost function.

The only drawback to this algorithm is that robots must
know the different tasks at the beginning in order to calculate
the mean of the distances. This has been implemented using
a new kind of message that is sent at the beginning by the
monitoring center to all the robots. The only purpose of this
message is to transmit the different task to the robots, so they
can calculate the mean of the distances necessary for the new
cost function. Afterwards, the extra resources needed for the
algorithm are almost the same as that for the basic market-
based approach since robots only have to memorize the mean
calculated at the beginning and implement one basic cost
function operation.

C. RTMA: Robot and Task Mean Allocation algorithm

The last algorithm is a mix between the RMA and the
TMA algorithms. Therefore, the cost function will be the
one used in the TMA algorithm, while the logic used to
select tasks is the one used in the RMA. As it was shown
for the TMA, it has the same results if the distance or the
new cost function is used in the logic that selects tasks. If
the distances are used, taskTi will be the one selected if and
only if:

N∑

l=1

D(Rl, Ti)

N
− D(Rk, Ti) >

N∑

l=1

D(Rl, Tj)

N
− D(Rk, Tj)

(5)
On the other hand if the new cost function is used, task

Ti will be the one selected if and only if:

N∑

l=1

C(Rl, Ti)

N
− C(Rk, Ti) >

N∑

l=1

C(Rl, Tj)

N
− C(Rk, Tj)

(6)

whereC(Ra, Tb) = D(Ra, Tb) −
∑N

t=1

D(Ra, Tt)

N
.

Thus,

N∑

l=1

D(Rl, Ti)

N
−

N∑

l=1

N∑

t=1

D(Rl, Tt)

N2
(7)

−D(Rk, Ti) −
N∑

t=1

D(Rk, Tt)

N

>

N∑

l=1

D(Rl, Tj)

N
−

N∑

l=1

N∑

t=1

D(Rl, Tt)

N2

−D(Rk, Tj) −

N∑

t=1

D(Rk, Tt)

N
.

Simplifying the last equation, it is obtained:

N∑

l=1

D(Rl, Ti)

N
− D(Rk, Ti) >

N∑

l=1

D(Rl, Tj)

N
− D(Rk, Tj)

(8)
As can be seen, Equations 5 and 8 are exactly the same.

However, due to practical implementation it is easier to
compare the tasks using the new cost function, because the
bids are calculated with it.

IV. SIMULATIONS AND DISCUSSION

A multi-robot simulator has been used to test decentral-
ized algorithms. This simulator is based on an architecture
designed for heterogeneous robots [19] and divided into
three layers. The highest layer is independent from the type
of robot and is the one aware of the existence of other
robots. Thus, the task allocation algorithm is implemented
in this layer. Moreover, the communication among robots
is based on IP, so it can also be used as an interprocess
communication method for simulations. The other two layers
are used to execute the different tasks allocated to the robot
and make easier the creation of new algorithms by using to
a modular and component-based architecture.

The different algorithms have been tested using initial
positions of the robots and formations calculated at random
in a virtual world of1000x1000 meters. The simulations have
been accomplished using a variety of scenarios in which
the number of robots and tasks ranged from 2 up to 20,
and for every case one hundred simulations were run. These
results are shown in Figure 3 where the mean of the global
cost and the error in percentage in comparison with the
optimal solution are presented. The optimal solution has
been calculated using the Hungarian method [11]. It can be
observed that the best algorithm is the RTMA and the worst
one is the basic market-based (BS) algorithm, although all
the algorithms obtains efficient results up to 8 robots and
tasks where the largest error is less than10%. For more than
8 robots only the RTMA algorithm obtained good results,
with a maximum error of5.98% in the case of 20 robots. As
can be seen in Figure 3, the error with the optimal solution is
bounded by a linear function for all the algorithms with the
number of robots and tasks. However, the RTMA algorithm
is the one with lowest slope. Furthermore, it is interestingto
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Fig. 3. Error in percentage in comparison with the optimal solution for
the different types of algorithms and calculating the inital positions of the
robots and the points of the formations at random over 100 simulations.

comment that with less than 10 robots the RMA algorithm
obtains results slightly better than the TMA algorithm, but
over 10 robots it is the TMA algorithm which obtains better
results than the RMA. It is also important to point out that for
2 robots and tasks the RMA and RTMA algorithms always
obtain the optimal solution.

The results of Figure 3 only show statistically how good
the algorithm is, based on the mean. However, it could
be the case that an algorithm could have good results
on average but there are some situations where its results
have large errors. Therefore, another important parameterto
consider is the maximum error with the optimal solution
over all the simulations. In Figure 4, the maximal errors
in percentage is shown. First of all, it can be observed that
the RMA algorithm obtains worse maximal errors than the
TMA algorithm and, in some cases, even worse than the
BS algorithm, but the mean of the global cost is lower for
the RMA algorithm as can be seen in Figure 3. Therefore,
the RMA algorithm has a better behavior on average but in
certain circumstances the results can be worse than the TMA
and BS algorithms. On the other hand, the BS algorithm is
still the worst one for most of the cases, while the RTMA
algorithm presents the best results. As can be seen in Figure
4, the mean of the maximum errors considering all the cases
is 14.91% for the RTMA algorithm and33.77% for the BS
algorithm which is greater than the mean error commented in
Figure 3. That means these algorithms do not have a constant
behavior and for a specific situation results could be worse
than the average.

All the results presented have been calculated using
random position of the robots and random points of the
formations uniformly distributed. However, the quality ofthe
solution for some of the algorithms depends on the type of
formations. In Figure 5, there are two types of formations: the
one on the left is calculated totally at random and is the one
used so far, the other formation on the right has a structure
formed by two boxes. Most of the points and robots of the
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Fig. 4. Maximum errors in percentage in comparison with the optimal
solution in 100 simulations for the different types of algorithms and
calculating the inital positions of the robots and the points of the formations
at random.

Fig. 5. Types of formations used in the simulations. Left: initial positions
of the robots and the formations calculated at random. Right: most of the
formation points and the initial positions of the robots calculated at random
in the small box and the others calculated outside the big boxand calculated
also at random.

formation are in the small box, and the others outside the big
box. As can be seen in Figure 6, the BS algorithm obtains
worse results than the ones obtained with the other type
of formation, specially for low number of robots and tasks.
Another important characteristic of this type of formations is
that the error in percentage in comparison with the optimal
solution remains more or less constant for different number
of robots and tasks. Therefore, for this type of formations
the behavior of the algorithms for a specific situation are
more predictable than with the totally random formations.
Finally, the RTMA algorithm obtains also the best results
while the BS algorithm the worst ones and unlike the first
type of formations, the TMA algorithm always obtains worse
results than the RMA algorithm for all the cases simulated.

V. CONCLUSIONS AND FUTURE
DEVELOPMENTS

The Initial Formation Problem has been stated and four
different algorithms that solve this problem in a distributed
way have been explained. The first one is based on the basic
market-approach, it is the simplest algorithm but obtains the
worst results in most of the cases. Also, it is the algorithm
that is most affected by the structure of the formation due
to the fact that its results get worse more with the second
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Fig. 6. Error in percentage in comparison with the optimal solution for
the different types of algorithms and calculating the inital positions of the
robots and the points of the formations as it is described in the right part
of the Figure 5 over 100 simulations.

type of formations. The second and third algorithms use the
mean of the costs (considering all the tasks associated to a
robot or all the robots for a specific task) in order to increase
the information about the whole system and improve the
results, but always keeping the distributed computation of
the algorithm. These two algorithms obtain similar results
for all the cases and better than the ones obtained with the
first algorithm. Finally, the RTMA, which is a combination
of the RMA and TMA algorithms, obtains the best results
in all the cases for both types of formations since combines
the good characteristics of the RMA and TMA algorithms.

Two different types of formations have been used. In the
first one, the error in comparison with the optimal solution
increases in a linear way with the number of robots and
tasks. In the sencod one, the error keeps slightly constant.
Therefore, the behavior of the algorithms is more predictable
for the second type of formations.

Future work includes the consideration of the sensor infor-
mation in the task allocation algorithms. Therefore, the local
environment information will be considered in the bidding
process using cost functions that express in a more realistic
way the effort needed to achieve a task. Also, more realistic
situations will be considered that include aspects such as
limited communication radius and failures in the robots.
Finally, it is also planned to implement these algorithms
in real robots and test their robustness and performance in
different terrain environments.
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